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Abstract 

Current design provisions pertaining to the shear transfer strength of concrete-to-concrete 

interfaces, including those of the AASHTO LRFD design specifications and ACI 318 code, are 

based on limited physical test data from studies conducted decades ago. Since the development 

of these design provisions, many studies have been conducted to investigate additional 

parameters. In addition, modern concrete technology has expanded the range of materials 

available and often includes the use of high-strength concrete and high-strength reinforcing steel. 

Recent studies examined the applicability of current shear friction design approaches to 

interfaces that comprise high-strength concrete and/or high-strength steel and identified a need 

for revision to the existing provisions. To this end, this study leveraged a comprehensive 

database of test results collected from the literature to propose a deep learning-based predictive 

model for normal-weight concrete-to-concrete interfacial shear strength. Additionally, a new 

computation scheme is proposed to estimate the design shear strength with a higher prediction 

accuracy than the existing AASHTO LRFD and ACI 318 design provisions. 
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Chapter 1 Introduction 

1.1 Background  

The shear friction design concept is applicable in conditions where direct shear must be 

transferred across a structural concrete plane or interface, such as an existing crack or an 

interface between dissimilar materials or concretes cast at different times (i.e., construction or 

cold joint). Shear friction provisions are commonly used in the design of reinforced and precast-

prestressed concrete bridge elements/connections, including corbels, dapped double tees, beam 

bearings, and diaphragms. These types of connections are critical to the safety of the structure 

because there is little or no redundancy. 

The existing shear friction design provisions are largely empirical and are based on 

physical test data. In fact, the AASHTO LRFD Bridge Design Specifications (AASHTO 2020) 

and ACI 318 Building Code Requirements for Structural Concrete (ACI-318 2019) use different 

approaches to compute the shear transfer strength resulting in different shear friction equations 

and maximum design values. The data used to develop these provisions are predominantly from 

experiments conducted decades ago. However, modern concrete construction has expanded the 

range of construction materials available, and recent studies on shear friction have included tests 

on advanced materials such as high-strength concrete (Kahn and Mitchell 2002), high-

performance concrete (Hegger and Görtz, 2003; Crane, 2010), lightweight concrete (Shaw and 

Sneed, 2014), and high-strength reinforcing steel (Barbosa et al., 2017). Thus, the applicability 

of the design provisions to interfaces with high-strength concrete and/or high-strength 

reinforcing steel is worth investigating, especially as these materials become increasingly 

common in modern bridge and building structures. 

 



2 
 

1.2 Research Significance  

Edgmond and Sneed (2019) assembled a comprehensive database of shear friction test 

results, enabling an in-depth statistical analysis to evaluate different shear friction design 

provisions. The authors identified a critical need for revision to current design provisions to 

ensure safe and cost-effective designs. In this context, the present study proposes a deep 

learning-based regression model to predict the interfacial shear strength in reinforced concrete. 

Deep learning has been used in the past to predict the compressive strength (Duan et al. 2013, 

Dantas et al. 2013), shear strength (Asteris et al. 2019, Bashir and Ashour 2012), and elastic 

modulus (Demir 2008) of concrete. However, it has not been used to predict the interfacial shear 

strength at normal-weight concrete-to-concrete interfaces. This study aims to fill this gap by 

investigating multilayer perceptron (MLP) and one-dimensional convolutional neural network 

(1D-CNN)-based deep learning models to predict the interfacial shear strength in reinforced 

concrete based on 12 input parameters. The proposed techniques were observed to outperform 

the existing design methods that rely on linear expressions as well as the traditional polynomial 

regression models. This study also went a step further and reduced the dimension of the 

parameter space from 12 to 6 by an iterative selection, elimination, and grouping of the original 

parameters. This paved the way for a new design scheme based on a state-of-the-art neural 

additive modeling approach (Agarwal et al. 2021) that was found to be more accurate than the 

existing AASHTO LRFD and ACI 318 design provisions. It is believed that the findings of this 

work will help engender the long-sought changes in the current design provisions leading to safer 

and more economical design of reinforced concrete structures. 
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Chapter 2 Existing Design Equations  

2.1 ACI 318 Building Code Requirements 

The deep learning techniques proposed in this study are benchmarked against the current 

AASHTO LRFD and ACI 318 design provisions. The ACI 318 code provides a shear friction 

model that is based on a linear relationship between interfacial normal forces and shear strength 

that neglects the contribution of concrete cohesion. The ACI 318 code equation for determining 

the nominal shear strength 𝑉𝑉𝑛𝑛 of a given interface can be written in terms of nominal shear stress 

𝑣𝑣𝑛𝑛 as: 

 

𝑣𝑣𝑛𝑛 = 𝜌𝜌𝑓𝑓𝑦𝑦(𝜇𝜇 sin𝛼𝛼 + cos𝛼𝛼) + 𝜇𝜇𝜎𝜎𝑁𝑁 (2.1) 

 

where 𝑣𝑣𝑛𝑛 is 𝑉𝑉𝑛𝑛 divided by the area of the interface. 𝛼𝛼 is the acute angle between the shear friction 

reinforcement and the shear interface; the model does not apply if 𝛼𝛼 is greater than 90°. 𝜌𝜌 is the 

ratio of area of shear-friction reinforcement crossing the shear plane to the area of the interface 

engaged in shear transfer. 𝑓𝑓𝑦𝑦 is the yield strength of shear friction reinforcement [not to exceed 

420 MPa (60 ksi)]. 𝜇𝜇 is the coefficient of interfacial friction as enumerated in Table 2.1. 𝜎𝜎𝑁𝑁 is the 

compressive normal stress applied to the shear interface, if present (𝜎𝜎𝑁𝑁 is taken as positive for 

compression). In the case of net tension applied to the interface, a part of the reinforcement 

crossing the shear plane is utilized in resisting tension and provides no contribution to the shear 

strength. The residual reinforcement is considered for shear strength estimation as per Equation 

2.1 with 𝜎𝜎𝑁𝑁 taken as zero. The shear strength (𝑣𝑣𝑛𝑛) is subject to the maximum limits prescribed by 

ACI 318 based on the condition of the concrete surface and the compressive strength of concrete 
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𝑓𝑓𝑐𝑐′ (Table 2.2). If the concretes on two sides of the shear interface have different strengths, then 

the lesser value of 𝑓𝑓𝑐𝑐′ should be considered. 

 

Table 2.1 Coefficients of friction (μ) for normal-weight concrete interfaces as prescribed by ACI 
318 

Contact surface condition Coefficient of 
friction (𝝁𝝁) 

Concrete placed monolithically 1.4 
Concrete placed against hardened concrete that is clean, free of 

laitance, and intentionally roughened to a full amplitude of 
approximately 6 mm 

1.0 

Concrete placed against hardened concrete that is clean, free of 
laitance, and not intentionally roughened 

0.6 

 

Table 2.2 Maximum 𝑣𝑣𝑛𝑛 across the shear plane as prescribed by ACI 318. 𝑓𝑓𝑐𝑐′ is the compressive 
strength of monolithically cast concretes engaged in shear friction. If the concretes on the two 

sides of the shear interface have different strengths, then the lesser value of 𝑓𝑓𝑐𝑐′ should be 
considered. 

Condition Maximum 𝒗𝒗𝒏𝒏  in MPa (ksi) 

Normalweight concrete placed monolithically or placed 
against hardened concrete intentionally roughened to a 

full amplitude of approximately 6 mm (1/4 in) 

least of �
0.2𝑓𝑓𝑐𝑐′

3.3 (480) + 0.08𝑓𝑓𝑐𝑐′
11 (1600)

 

Other cases least of � 0.2𝑓𝑓𝑐𝑐′
5.5 (800) 

 

2.2 AASHTO LRFD Bridge Design Specifications 

Similar to the ACI 318 approach, the AASHTO LRFD model is also based on a linear 

relationship between interfacial normal forces and shear strength, but it considers an additional 

component of cohesion, as shown in the following equation written in terms of shear stress: 
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𝑣𝑣𝑛𝑛 = 𝑐𝑐 + 𝜇𝜇�𝜌𝜌𝑓𝑓𝑦𝑦 + 𝜎𝜎𝑁𝑁� (2.2) 

 

subject to the maximum limit of 

𝑣𝑣𝑛𝑛,𝑚𝑚𝑚𝑚𝑚𝑚 = 𝑚𝑚𝑚𝑚𝑣𝑣{𝐾𝐾1𝑓𝑓𝑐𝑐′,𝐾𝐾2} (2.3) 

 

where 𝑐𝑐 is the cohesion factor and 𝐾𝐾1, 𝐾𝐾2 are friction factors dictated by the interface condition 

(Table 2.3). For brackets, corbels, and ledges, 𝑐𝑐 should be taken as zero since the effectiveness of 

cohesion and aggregate interlocking along a vertical crack interface is unreliable. Similar to ACI 

318, if the concrete on two sides of the shear interface have different strengths, then the lesser 

value of 𝑓𝑓𝑐𝑐′ should be considered. It should be noted here that AASHTO LRFD does not specify 

how to deal with inclined reinforcement. However, the above equation can be extended for the 

case of inclined reinforcement based on the physical model enunciated in ACI 318. The 

treatment of the net tension case is identical with the requirements of ACI 318. 

 

Table 2.3 Cohesion and friction factors for normal-weight concrete interfaces as prescribed by 
AASHTO LRFD. For brackets, corbels, and ledges, c should be taken as zero. 

Description 𝒄𝒄 in MPa 
(ksi) 𝝁𝝁 𝑲𝑲𝟏𝟏 𝑲𝑲𝟐𝟐 in MPa 

(ksi) 

Concrete placed monolithically 2.8  
(0.4) 1.4 0.25 10.3  

(1.5) 
Concrete placed against a clean concrete 

surface, free of laitance with surface 
roughened to an amplitude of 6 mm (1/4 in) 

1.9  
(0.28) 1.0 0.3 12.4  

(1.8) 

Concrete placed against a clean concrete 
surface, free of laitance, but not 

intentionally roughened 

0.52 
(0.075) 0.6 0.2 5.5  

(0.8) 
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2.3 Performance Evaluation  

To evaluate the performance of these design provisions, the database of test results 

collected by Edgmond and Sneed (2019) was examined. It should be mentioned in this context 

that some specimens in the original database were subjected to eccentric loading leading to 

combined bending and shear. The dataset also contained composite beam specimens tested under 

3- and 4-point bending configurations. Such loading conditions were beyond the scope of the 

present study and were therefore eliminated from the revised dataset. Additionally, the database 

was also comprised of specimens with inclined interfaces, but they were not included in this 

study. The resulting dataset contained 639 test results. 

 

  

(a) With design limits (b) Without design limits 
Figure 2.1 Accuracy of ACI 318 shear friction design provisions with and without prescribed 
design limits. 𝑣𝑣𝑛𝑛,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑣𝑣𝑛𝑛,𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝 denote the experimental and predicted values of interfacial 
shear strength (in MPa), respectively. NSC, NSS, HSC, and HSS represent normal strength 
concrete, normal strength steel, high-strength concrete, and high-strength steel, respectively. 

Concrete having compressive strength greater than 60 MPa is designated herein as HSC. 
Steel reinforcement having yield strength greater than 420 MPa is identified as HSS. 6.89 

MPa = 1 ksi. 
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The shear strength values calculated by the design provisions are plotted against the test 

data in Figures 2.1 and 2.2. Load and strength reduction factors are taken as 1.0. It should be 

noted here that the strength of concrete and reinforcing steel has increased over the years, 

extending beyond the experimental results on which the design equations were based. The 

current design specifications get around this by limiting the maximum steel yield strength and 

maximum nominal shear strength to keep the design within the parameters of the empirical 

formulas. Therefore, the shear strength values calculated by disregarding the design limits are 

also plotted in the same figures for comparative evaluations. It was observed the values 

calculated by AASHTO LRFD (R2 = 0.62) are more accurate than those by ACI 318 (R2 = 0.35) 

when the design limits are employed. Also, the ACI 318 values tend to be more conservative 

(i.e., test value is larger than calculated value). These observations can be partly attributed to the 

fact that the AASHTO LRFD design provision considers the contribution of concrete cohesion, 

which ACI 318 neglects. As a consequence, ACI 318 predicts zero shear strength for specimens 

with no shear reinforcement, which is at odds with the experimental observations. The 

elimination of design limits increased the calculated strength of specimens made of high-strength 

materials. This is more prominent in specimens with high-strength steel reinforcement, as 

evident in Figures 2.1 and 2.2. It should be noted concrete with a compressive strength greater 

than 60 MPa (9 ksi) is designated in this study as high-strength concrete. On the other hand, steel 

reinforcement having a yield strength greater than 420 MPa (60 ksi) is identified as high-strength 

steel. Withdrawal of the design limits resulted in an increase in accuracy for ACI 318 but a 

reduction in accuracy for AASHTO LRFD. For both provisions, it should be noted that removal 

of design limits resulted in many calculated values being overestimated (i.e., unconservative) by 

a significant margin. Overall, AASHTO LRFD, along with the prescribed design limits, 
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produced the most accurate results and is therefore considered as a benchmark to assess the 

performance of the deep learning techniques introduced later in this paper. 

 

  

(a) With design limits (b) Without design limits 
Figure 2.2 Accuracy of AASHTO LRFD shear friction design provisions with and without 

prescribed design limits. 𝑣𝑣𝑛𝑛,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 and 𝑣𝑣𝑛𝑛,𝑝𝑝𝑝𝑝𝑡𝑡𝑝𝑝 denote the experimental and predicted values of 
interfacial shear strength (in MPa), respectively. NSC, NSS, HSC, and HSS represent 

normal strength concrete, normal strength steel, high-strength concrete, and high-strength 
steel, respectively. Concrete having compressive strength greater than 60 MPa is designated 
herein as HSC. Steel reinforcement having yield strength greater than 420 MPa is identified 

as HSS. 6.89 MPa = 1 ksi. 
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Chapter 3 Proposed Neural Network Approach 

3.1 Prediction of Interfacial Shear Strength  

3.1.1 Multi-Layer Perceptron  

To predict the interfacial shear strength, this study examined two classes of deep learning 

approaches, namely a multi-layer perceptron (MLP) and a 1D convolutional neural network 

(CNN). An MLP is the simplest form of a neural network consisting of interconnected neurons 

organized in the form of input, hidden, and output layers (Murtagh 1991). Information flows 

from the input to the output layer in a feed-forward manner through the connections. The input 

layer takes in an input, which is subsequently processed by the intermediate hidden layers 

through a series of linear and nonlinear operations. Finally, the prediction of the neural network 

is displayed in the output layer. The connections between nodes are characterized by weights 

learned through a supervised back-propagation training algorithm (Hecht-Nielsen 1992). The 

input layer in the proposed MLP had 12 nodes corresponding to 12 input parameters, as shown in 

Table 3.1. It should be noted the interface type (𝐼𝐼) was an ordinal variable assuming a value of 1, 

2, or 3 for monolithic, intentionally roughened (herein referred to as “rough”), or not 

intentionally roughened (herein referred to as “smooth”) surfaces, respectively. None of the 

design limits prescribed by the ACI 318 code or the AASHTO LRFD design specifications were 

put into practice in any of the deep learning-based approaches. It is also worth mentioning many 

of the parameters listed in Table 3.1 are disregarded by the existing design provisions. The 

number of nodes in the hidden layers are shown in Figure 3.1. The output layer contained only 

one node, which corresponded to the interfacial shear strength. 
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Table 3.1 The list of parameters used as input to the deep learning models 

Attribute Symbol Parameter 

Interface 

𝐼𝐼 Interface type 

𝐿𝐿 Length of shear plane 

𝑊𝑊 Width of shear plane 

Concrete 
𝑓𝑓𝑐𝑐1, 𝑓𝑓𝑐𝑐2 Experimental compressive strength of 

concrete on either side of the shear plane 

𝑓𝑓𝑡𝑡1, 𝑓𝑓𝑡𝑡2 Estimated tensile strength of concrete on 
either side of the shear plane 

Steel 

𝛼𝛼 Angle of inclination of shear friction 
reinforcement relative to the shear plane 

𝑣𝑣𝑡𝑡 
Number of reinforcing bar legs crossing the 
shear interface 

𝑝𝑝 Diameter of reinforcing bars crossing the 
shear interface 

𝑓𝑓𝑦𝑦 Yield strength of shear friction 
reinforcement 

Loading 𝜎𝜎𝑁𝑁 Normal stress applied to the shear interface 
 

 
Figure 3.1 The network architecture of the MLP used for the prediction of interfacial shear 

strength. The number above each layer denotes the number of neurons in that layer. 



11 
 

3.1.2 Convolutional Neural Network 

A Convolutional Neural Network (CNN) employs convolution operations to extract 

spatial features (O’Shea and Nash 2015). In this study, the 12 input parameters were arranged as 

a 1D array and were passed through a series of convolution, batch normalization, and rectified 

linear unit (ReLU) layers (Figure 3.2). The output from the last ReLU layer was flattened and 

was input to a fully connected layer to produce the final network output. In this study, the 

optimum network parameters were obtained by minimizing the mean squared error between the 

predicted and target interfacial shear strengths using an Adam-based optimizer (Kingma and Ba 

2014). 

 

 

 
Figure 3.2 The architecture of 1D CNN used in this study for the prediction of interfacial 
shear strength. CBR represents a sequence of 1D convolution, batch normalization and 

rectified linear unit (ReLU) operations. FC denotes a fully connected layer. The feature size 
at each layer is expressed as a triad in H×W×C format, where H, W, and C denote the 

height, width, and number of channels, respectively. 
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3.1.3 Performance Evaluation 

To assess the performance of the proposed deep learning techniques, three different 

evaluation metrics were considered in this study, namely the coefficient of determination (R2), 

mean absolute error (MAE), and root mean squared error (RMSE). R2 is the goodness of fit 

measurement. It is represented by a value ranging from 0 to 1. A value of 1.0 indicates a perfect 

fit and a highly reliable model, whereas a value of 0 implies that the model utterly fails to fit the 

data. On the other hand, MAE and RMSE are the two most common indicators used to measure 

the amount of error in model predictions. A larger value of the metrics means a higher error 

between the true and predicted values and vice versa. 
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(a) Coefficient of Determination (R2) 
 

(b) Mean Absolute Error (MAE) 

 

(c) Root Mean Squared Error (RMSE) 
Figure 3.3 Performance of the proposed deep learning approaches compared to the 

AASHTO LFRD design provisions. 6.89 MPa = 1 ksi. 

 

Ten-fold cross-validation was conducted in this study to test the generalization ability of 

the trained models. At each cross-validation round, 10% of the available data (64) were 

randomly chosen as the test set, and the remaining 90% of the data (575) were used to train the 

models. The performance indicators obtained from the cross-validation process are plotted in 

Figure 3.3. The small squares inside the rectangular boxes represent mean values. The horizontal 

lines inside the boxes represent the median values. The upper and lower sides of the rectangular 
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boxes denote one standard deviation on either side of the mean values, and the whiskers 

protruding out of the boxes represent the minimum and maximum values of the performance 

metrics. It was observed that the MLP [mean R2: 0.89, mean MAE: 0.69 MPa (0.10 ksi), mean 

RMSE: 1.19 MPa (0.17 ksi)] outperformed the AASHTO LRFD design specifications by a 

significantly large margin [mean R2: 0.62, mean MAE: 1.55 MPa (0.22 ksi), mean RMSE: 2.19 

MPa (0.32 ksi)]. The 1D CNN exhibited a similar accuracy to the MLP [mean R2: 0.89, mean 

MAE: 0.67 MPa (0.10 ksi), mean RMSE: 1.20 MPa (0.17 ksi)]. However, the predictions of the 

MLP were more robust than the 1D CNN, as indicated by the height of the corresponding 

rectangular boxes. Thus, the MLP is identified to be more suitable than the 1D CNN-based 

approach and is used for all subsequent analyses. The inclusion of a broader range of parameters 

and the inherent ability of deep learning-based techniques to model nonlinear relations can be 

credited for the overall superiority of these methods compared to the existing provisions that 

were developed based on the evaluation of discrete sets of test data. 

3.2 Reduction of the Parameter Space 

Despite the proven advantage, deep learning-based prediction models, unfortunately, 

have very few takers among structural engineers and designers. Therefore, it is improbable that 

these advanced modeling techniques will replace the prevailing design provisions anytime soon. 

Therefore, this study seeks to propose a new design scheme by striking a delicate balance 

between the accuracy of deep learning models and the intuitive simplicity and physical 

understanding of the existing design models. As a steppingstone towards that objective, this 

section aims to reduce the dimension of the parameter space, which will be instrumental in 

enhancing the model’s simplicity. Subsequent to this, a recent advancement in deep learning is 
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leveraged to propose a simple computation scheme as a more accurate alternative to the existing 

design provisions.  

Backed by the physical understanding of the underlying principles, this study achieved a 

reduced parameter set by the iterative selection, elimination, and aggregation from the original 

list of parameters. At the end of the process, six key parameters are produced, indicating a 50% 

reduction in the parameter space dimension: 

 

𝑥𝑥1 = 𝐼𝐼 (3.1) 

𝑥𝑥2 = 𝐿𝐿𝑊𝑊 (3.2) 

𝑥𝑥3 = �𝑚𝑚𝑚𝑚𝑣𝑣(𝑓𝑓𝑐𝑐1,𝑓𝑓𝑐𝑐2) (3.3) 

𝑥𝑥4 =
𝜋𝜋𝑝𝑝2𝑣𝑣𝑡𝑡
4𝐿𝐿𝑊𝑊

𝑓𝑓𝑦𝑦 
(3.4) 

𝑥𝑥5 = 𝛼𝛼 (3.5) 

𝑥𝑥6 = 𝜎𝜎𝑁𝑁 (3.6) 

 

It was observed that the reduction in the number of parameters slightly reduced the 

prediction accuracy of the MLP (Figure 3.4). It produced a mean R2 of 0.85, mean MAE of 0.83 

MPa (0.12 ksi), and mean RMSE of 1.33 MPa (0.19 ksi), indicating a slight reduction in 

performance compared to the original 12-parameter model [mean R2: 0.89, mean MAE: 0.69 

MPa (0.10 ksi), mean RMSE: 1.19 MPa (0.17 ksi)].  
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(a) Coefficient of Determination (R2) 
 

(b) Mean Absolute Error (MAE) 

 

(c) Root Mean Squared Error (RMSE) 
Figure 3.4 Consequence of parameter reduction and comparison with polynomial 

regression; The original MLP based on 12 input parameters is denoted by MLP(12). On the 
other hand, MLP(6) represents a modified MLP based on a reduced set of six parameters. 

6.89 MPa = 1 ksi. 

 

Further, this study tested the efficacy of an ordinary polynomial regression model, which 

was based on a feature space that comprised all polynomial combinations of the parameters with 

a degree less than or equal to a specified degree. The highest specified degree of the polynomial 

features varied sequentially, and quadratic features produced the most accurate predictions [mean 

R2: 0.74, mean MAE: 1.06 MPa (0.15 ksi), mean RMSE: 1.74 MPa (0.25 ksi)]. Although the 
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quadratic regression model considerably outperformed the design equation provided by the 

AASHTO LRFD specification [mean R2: 0.62, mean MAE: 1.55 MPa (0.22 ksi), mean RMSE: 

2.19 MPa (0.32 ksi)], it still did not perform as well as the MLP-based algorithm. This confirms 

the point that the traditional regression models are no match for the latest deep learning-based 

techniques, particularly when accuracy is a key objective. On the whole, this signifies an 

important breakthrough that sets the stage for developing a new design scheme, as presented in 

the following section. 

 

 
Figure 3.5 Neural additive models 
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3.3 New Learning-Informed Design (LID) Scheme 

3.3.1 Neural Additive Models 

This section is dedicated to the development of a new LID scheme which is accurate and 

straightforward. To this end, this study leveraged a recent development in deep learning called 

neural additive models (Agarwal et al. 2021). This additive modeling approach jointly trains a set 

of neural networks that attend to a single input parameter (Figure 3.5). This study used six MLP 

blocks to handle the six input parameters identified in the previous section. The MLP blocks, 

apart from the input and output layers, contain three intermediate layers, comprising 16 neurons 

each. The MLP blocks can learn arbitrary complex shape functions, a combination of which 

produce the final model outputs, as shown in the following equation. 

 

𝑦𝑦 = 𝛽𝛽 + 𝜙𝜙(𝑡𝑡) (3.8) 

 

Where 

 

𝑡𝑡 = �𝑓𝑓𝑖𝑖(�̅�𝑥𝑖𝑖)
6

𝑖𝑖=1

 (3.9) 

𝜙𝜙(𝑡𝑡) =  𝜉𝜉𝑡𝑡 +
1 − 𝜉𝜉
𝑦𝑦�2

𝑡𝑡3, 𝜉𝜉 ∈ [0,1] 

          =  
−𝜉𝜉
𝑦𝑦�4

𝑡𝑡5 +
1 + 𝜉𝜉
𝑦𝑦�2

𝑡𝑡3, 𝜉𝜉 ∈ [−1,0] 

(3.10) 

 

�̅�𝑥1, �̅�𝑥2, …, �̅�𝑥6 are normalized parameters given by 
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�̅�𝑥𝑖𝑖 =
𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖,𝑚𝑚𝑖𝑖𝑛𝑛

𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑥𝑥𝑖𝑖,𝑚𝑚𝑖𝑖𝑛𝑛
 (3.11) 

 

𝑥𝑥𝑖𝑖,𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑥𝑥𝑖𝑖,𝑚𝑚𝑖𝑖𝑛𝑛 are the maximum and minimum values for the 𝑚𝑚-th parameter as 

enumerated in Table 3.2. 𝑦𝑦� is the mean value of observed shear strength. 𝜉𝜉 is a coefficient that 

regulates the mix proportion of linear and non-linear terms. To estimate the optimum value of 𝜉𝜉, 

its value is increased gradually from −1 to 1. For each increment it increases by, the 𝜉𝜉 value is 

followed by a training of the model using 10-fold cross-validation. The mean R2 values obtained 

from 10 rounds of cross-validation are plotted in Figure 3.6 against the corresponding 𝜉𝜉 values. 

When 𝜉𝜉 = 0, 𝜙𝜙(𝑡𝑡) is a cubic function of 𝑡𝑡. When 0 < 𝜉𝜉 < 1, 𝜙𝜙(𝑡𝑡) contains both linear and cubic 

terms. 𝜉𝜉 = 1 gives rise to an entirely linear function of 𝑡𝑡. In the same token, 𝜙𝜙(𝑡𝑡) is an amalgam 

of cubic and quintic terms for −1 < 𝜉𝜉 < 0. Lastly, 𝜉𝜉 = −1 indicates a pure quintic function of 𝑡𝑡. 

Figure 3.6 reveals that the best performance is achieved when 𝜉𝜉 = 0, implying that 𝜙𝜙(𝑡𝑡) is a 

cubic function of 𝑡𝑡. It can be mentioned in this context that a non-linear function of 𝑡𝑡 enables an 

interaction among various shape function components, which is otherwise nonviable in 

traditional additive modeling approaches where the shape functions are linearly combined. 

Therefore, a cubic 𝜙𝜙(𝑡𝑡) is chosen in this study for all subsequent analyses. 
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Figure 3.6 The coefficient of determination (R2) produced by different values of ξ. The 

plotted values are mean R2 obtained from a 10-fold cross-validation. 

 

Table 3.2 Minimum and maximum values of the input parameters. 6.89 MPa = 1 ksi. 25.4 mm = 
1 in. 

𝒙𝒙𝒊𝒊 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 (mm2) 𝒙𝒙𝟑𝟑 
(√𝐌𝐌𝐌𝐌𝐌𝐌) 𝒙𝒙𝟒𝟒 (MPa) 𝒙𝒙𝟓𝟓 (°) 𝒙𝒙𝟔𝟔 (MPa) 

𝒙𝒙𝒊𝒊,𝒎𝒎𝒊𝒊𝒏𝒏 1 20645.12 3.86 0.00 0.00 -2.76 
𝒙𝒙𝒊𝒊,𝒎𝒎𝒎𝒎𝒙𝒙 3 247741.44 10.67 15.18 135.00 10.34 
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(a)  (b)  (c)  

   

(d)  (e)  (f)  
Figure 3.7 Feature-specific shape functions. The shape function values are plotted in MPa 

unit (6.89 MPa = 1 ksi). 

 

3.3.2 Shape Functions 

Once the training is complete, the shape functions can be plotted against the respective 

normalized parameter values. Each parameter produces 10 shape functions, corresponding to 10 

cross-validation rounds. These shape functions are averaged to obtain a single shape function 

corresponding to each parameter. 

 

𝑓𝑓𝑖𝑖(�̅�𝑥𝑖𝑖) =
1

10
�𝑓𝑓𝑖𝑖

𝑗𝑗(�̅�𝑥𝑖𝑖)
10

𝑗𝑗=1

 (3.12) 
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where 𝑓𝑓𝑖𝑖
𝑗𝑗(�̅�𝑥𝑖𝑖) denotes the shape function for the 𝑚𝑚-th parameter produced by the 𝑗𝑗-th 

cross-validation round. 𝑤𝑤𝑗𝑗 is the coefficient of determination (R2) on the test set corresponding to 

the 𝑗𝑗-th cross-validation round. 𝑓𝑓𝑖𝑖(�̅�𝑥𝑖𝑖) is the final aggregated shape function for the 𝑚𝑚-th 

parameter, as plotted in Figure 3.7. 𝑥𝑥1 is assigned an integer that can only be equal to one, two, 

or three, which correspond to �̅�𝑥1 of zero, 0.5, and one, respectively; thus, other values of this 

parameter are meaningless. 

These shape functions are largely consistent with the physical understanding of the 

problem. As per classical shear friction theory and recently developed models (Palieraki et al., 

2021; Palieraki et al., 2022), direct shear across a concrete-to-concrete interface is resisted by a 

combination of three mechanisms (cohesion, friction, and dowel action), which are affected by 

different parameters. These mechanisms do not reach their maximum contributions 

simultaneously, which adds to the complexity of the problem. Experimental evidence has shown 

that one of the important parameters that influences shear transfer is surface roughness (Saemann 

and Washa, 1964). A smoother surface leads to less aggregate interlocking and cohesion, 

resulting in reduced shear strength. This behavior is reflected in Figure 3.7(a), where a 

significant dip in the shape plot was noticed for smooth surfaces. Another parameter that plays a 

major role in interfacial shear transfer is the concrete compressive strength. Previous studies 

have established that an increase in the concrete compressive strength results in an increase in 

the interfacial shear strength (Mattock and Hawkins, 1972; Shaw and Sneed, 2014), which is 

corroborated by the behavior depicted in Figure 3.7(c). The figure also exhibits a softening effect 

towards the right, which is indicative of a diminishing return on increasing compressive strength. 

The clamping stress, which is defined as the product of the ratio and yield strength of shear 

reinforcement, is also known to significantly impact the interfacial shear strength (Saemann and 
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Washa, 1964; Hofbeck et al., 1969; Bass et al., 1989; Echegaray-Oviedo et al., 2014). It restrains 

crack dilation, develops aggregate interlocking, and thereby contributes positively to shear 

transfer strength through friction and dowel action. This is substantiated by the positive 

correlation exhibited in Figure 3.7(d). The figure also exhibits a softening effect towards the 

right, which is indicative of a diminishing return on increasing reinforcement ratio, yield 

strength, or both. Previous studies have indicated the presence of an external normal compressive 

stress can have an additive effect on the clamping stress leading to an enhanced shear friction 

strength (Mattock and Hawkins, 1972). On the other hand, the presence of an external normal 

tensile stress is seen to reduce the interfacial shear strength (Chatterjee, 1971). The observations 

in Figure 3.7(f) are in sync with this prior knowledge, facilitating the physical interpretation of 

the shape function plot. Interestingly, the behavior in Figure 3.7(b) suggests there is no 

consistent correlation between the interfacial area and shear strength. However, further 

investigation is needed to see whether size effects the different shear resisting mechanisms or 

interfacial shear strength. 

3.3.3 Proposed LID Scheme 

The shape functions can also be presented in a tabular form, as shown in Table 3.3. This 

tabular presentation of shape plots forms the basis of the proposed LID scheme. To predict the 

interfacial shear strength of an interface, the known parameter values are first normalized 

according to Equation 3.11. The shape function value corresponding to each normalized 

parameter is then interpolated from the two nearest entries in Table 3.3. In the end, all the 

estimated shape function values are combined to compute the interfacial shear strength (𝑦𝑦�), as 

follows: 
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𝑦𝑦� = 𝛽𝛽 + ��𝑓𝑓𝑖𝑖(�̅�𝑥𝑖𝑖)
6

𝑖𝑖=1

�

3

 (3.13) 

𝛽𝛽 = 0.02 (3.14) 

 

where 𝑓𝑓𝑖𝑖(�̅�𝑥𝑖𝑖) is the interpolated shape function value corresponding to parameter 𝑚𝑚. 𝛽𝛽 is the 

bias term evaluated by an averaging technique analogous to that shown in Equation 3.12. 

 

Table 3.3 Tabular presentation of the parameter-specific shape plots. All shape function values 
are in MPa unit (6.89 MPa = 1 ksi). 

�̅�𝑥 𝑓𝑓1(�̅�𝑥1)   𝑓𝑓2(�̅�𝑥2)   𝑓𝑓3(�̅�𝑥3)   𝑓𝑓4(�̅�𝑥4)   𝑓𝑓5(�̅�𝑥5)   𝑓𝑓6(�̅�𝑥6)   
0.00 0.20 0.06 0.20 -0.08 0.07 0.15 
0.02  0.15 0.21 -0.08 0.07 0.16 
0.04  0.23 0.22 -0.06 0.07 0.18 
0.06  0.31 0.25 -0.03 0.07 0.20 
0.08  0.37 0.27 0.00 0.06 0.23 
0.10  0.40 0.29 0.05 0.06 0.26 
0.12  0.39 0.32 0.10 0.06 0.29 
0.14  0.38 0.35 0.15 0.06 0.32 
0.16  0.36 0.38 0.19 0.05 0.35 
0.18  0.34 0.40 0.23 0.05 0.38 
0.20  0.33 0.41 0.26 0.06 0.40 
0.22  0.31 0.41 0.29 0.06 0.41 
0.24  0.29 0.42 0.32 0.06 0.41 
0.26  0.28 0.42 0.35 0.07 0.42 
0.28  0.26 0.42 0.39 0.07 0.42 
0.30  0.24 0.43 0.42 0.08 0.42 
0.32  0.21 0.44 0.45 0.09 0.43 
0.34  0.19 0.45 0.47 0.10 0.44 
0.36  0.17 0.47 0.49 0.10 0.45 
0.38  0.17 0.49 0.51 0.11 0.46 
0.40  0.17 0.50 0.53 0.11 0.47 
0.42  0.17 0.51 0.54 0.12 0.48 
0.44  0.18 0.52 0.55 0.12 0.50 
0.46  0.19 0.53 0.56 0.12 0.52 
0.48  0.20 0.54 0.57 0.12 0.53 
0.50 0.22 0.21 0.55 0.58 0.12 0.55 
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�̅�𝑥 𝑓𝑓1(�̅�𝑥1)   𝑓𝑓2(�̅�𝑥2)   𝑓𝑓3(�̅�𝑥3)   𝑓𝑓4(�̅�𝑥4)   𝑓𝑓5(�̅�𝑥5)   𝑓𝑓6(�̅�𝑥6)   
0.52  0.21 0.55 0.59 0.11 0.57 
0.54  0.22 0.56 0.60 0.11 0.59 
0.56  0.23 0.57 0.61 0.11 0.61 
0.58  0.24 0.57 0.61 0.10 0.64 
0.60  0.25 0.57 0.62 0.10 0.67 
0.62  0.26 0.58 0.63 0.10 0.71 
0.64  0.27 0.58 0.64 0.09 0.75 
0.66  0.28 0.58 0.65 0.09 0.78 
0.68  0.28 0.59 0.66 0.09 0.82 
0.70  0.29 0.59 0.67 0.09 0.86 
0.72  0.29 0.59 0.68 0.09 0.91 
0.74  0.29 0.60 0.69 0.09 0.95 
0.76  0.29 0.60 0.70 0.09 0.99 
0.78  0.29 0.60 0.71 0.09 1.03 
0.80  0.29 0.60 0.72 0.08 1.08 
0.82  0.29 0.61 0.73 0.08 1.12 
0.84  0.28 0.61 0.73 0.07 1.16 
0.86  0.28 0.61 0.74 0.07 1.21 
0.88  0.28 0.61 0.75 0.06 1.25 
0.90  0.28 0.62 0.75 0.05 1.29 
0.92  0.28 0.62 0.76 0.05 1.33 
0.94  0.28 0.63 0.76 0.04 1.38 
0.96  0.28 0.63 0.77 0.04 1.42 
0.98  0.28 0.64 0.78 0.03 1.46 
1.00 -0.14 0.28 0.64 0.78 0.03 1.50 

 

3.3.4 Illustrative Example 

The proposed LID scheme can be illustrated with the help of an example. Consider 

specimen BRS12-4 from Hanson (1960). The specimen has a rough interface that is 304.8 mm 

(12.0 in) long and 203.2 mm (8.0 in) wide. The compressive strengths of concrete on either side 

of the shear interface are 21.7 and 26.7 MPa (3.1 and 3.9 ksi). Interfacial reinforcement in the 

form of two 12.7 mm (0.5 in) diameter bars with a yield strength of 352 MPa (51 ksi) is oriented 

orthogonal to the interface. No compressive stress is applied normal to the interface. 

Accordingly, let 
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𝑥𝑥 = [2, 304.80, 203.20, 4.66, 1.44, 90, 0] (3.15) 

 

be a set of parameters characterizing a shear interface under investigation. Normalization 

of the parameters as per Equation 3.11 results in 

 

�̅�𝑥 = [0.50, 0.18, 0.12, 0.09, 0.67, 0.21] (3.16) 

 

Now, for �̅�𝑥1 = 0.50, �̅�𝑥2 = 0.18, and �̅�𝑥3 = 0.12, the shape function values 𝑓𝑓1(�̅�𝑥1), 𝑓𝑓2(�̅�𝑥2), 

and 𝑓𝑓3(�̅�𝑥3) can be read directly from Table 3.3 as 𝑓𝑓1(�̅�𝑥1) = 0.22, 𝑓𝑓2(�̅�𝑥2) = 0.34, and 𝑓𝑓3(�̅�𝑥3) = 

0.32. Next, to estimate the shape function value corresponding to �̅�𝑥4 = 0.09, the two nearest 

neighbors in the lookup table are identified as 𝑢𝑢 = 0.08 and 𝑣𝑣 = 0.10. The corresponding shape 

function values are 𝑓𝑓4(𝑢𝑢) = 0.00 and 𝑓𝑓4(𝑣𝑣) = 0.05. Therefore, 𝑓𝑓4(�̅�𝑥4) can be computed by 

employing a simple linear interpolation as: 

 

𝑓𝑓4(�̅�𝑥4) = 𝑓𝑓4(𝑢𝑢) + �𝑓𝑓4(𝑣𝑣) − 𝑓𝑓4(𝑢𝑢)� ×
�̅�𝑥4 − 𝑢𝑢
𝑣𝑣 − 𝑢𝑢

 (3.17) 

 

This leads to 𝑓𝑓4(�̅�𝑥4) = 0.03. In the same manner, the other shape function values can be 

estimated as shown in Table 3.4. Finally, these shape function values can be combined per 

Equation 3.13, resulting in an estimated interfacial strength of 2.79 MPa (0.40 ksi). This 

estimated shear strength compares favorably with (within 13.88% of) the test result of 2.45 MPa 

(0.36 ksi) (Hanson, 1960). The AASHTO LRFD design provisions predict a shear strength of 

3.34 MPa (0.48 ksi) for this specimen (36.33% larger than the test value), which is far less 

accurate than the proposed LID scheme. 
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Table 3.4 A numerical example to illustrate the proposed LID scheme 

𝒙𝒙�𝒊𝒊 𝒖𝒖   𝒗𝒗   𝒇𝒇𝒊𝒊(𝒖𝒖)   𝒇𝒇𝒊𝒊(𝒗𝒗)   𝒇𝒇�𝒊𝒊(𝒙𝒙�𝒊𝒊) 𝒗𝒗𝒏𝒏,𝑳𝑳𝑳𝑳𝑳𝑳 𝒗𝒗𝒏𝒏,𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨𝑨 𝒗𝒗𝒏𝒏,𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 

�̅�𝑥1 = 0.50 0.50 0.50 0.22 0.22 0.22  
 

2.79 
(13.88%) 

 
 

3.34 
(36.33%) 

 
 

2.45 
�̅�𝑥2 = 0.18 0.18 0.18 0.34 0.34 0.34 
�̅�𝑥3 = 0.12 0.12 0.12 0.32 0.32 0.32 
�̅�𝑥4 = 0.09 0.08 0.10 0.00 0.05 0.03 
�̅�𝑥5 = 0.67 0.66 0.68 0.09 0.09 0.09 
�̅�𝑥6 = 0.21 0.20 0.22 0.40 0.41 0.405 

Note: �̅�𝑥𝑖𝑖  indicates the normalized value of parameter 𝑚𝑚 . 𝑢𝑢  and 𝑣𝑣  signify the normalized parameter values 
corresponding to two nearest entries in Table 3.3.  The corresponding shape function values are represented as 𝑓𝑓𝑖𝑖(𝑢𝑢) 
and 𝑓𝑓𝑖𝑖(𝑣𝑣), respectively. 𝑓𝑓𝑖𝑖(�̅�𝑥𝑖𝑖) implies the shape function value obtained by linear interpolation of the nearest entries. 
𝑣𝑣𝑛𝑛,𝐿𝐿𝐿𝐿𝐿𝐿 denotes the interfacial shear strength estimated by the proposed LID scheme as per Equation 3.13. 𝑣𝑣𝑛𝑛,𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
connotes the shear strength predicted by AASHTO LRFD design equations. The experimental shear strength for the 
specimen under consideration is symbolized by 𝑣𝑣𝑛𝑛,𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. All shear strength values are reported in MPa unit (6.89 MPa 
= 1 ksi). The values inside ( ) indicate the percentage errors relative to the experimental result. 

 

3.3.5 Overall Performance 

The interfacial shear strength is obtained for all specimens in the data set. The accuracy 

of the predicted values is compared with the AASHTO LRFD design specifications in terms of 

R2, MAE, and RMSE in Figure 3.8. The proposed LID scheme produces significantly higher R2 

(0.79) and lower MAE [1.09 MPa (0.16 ksi)] and RMSE [1.61 MPa (0.23 ksi)] values compared 

to the AASHTO LRFD design specification [R2: 0.62, MAE: 1.55 MPa (0.22 ksi), RMSE: 2.19 

MPa (0.32 ksi)]. The estimated interfacial shear strength values are plotted against the 

experimental observations in Figure 3.9, which indicates a much closer correlation with the 

proposed LID scheme than the AASHTO LRFD design provision. It is also observed that the 

relative superiority of the proposed LID scheme cuts across normal and high-strength materials. 

This is a considerable advancement in which structural engineers and designers can use for a 

more accurate prediction of the interfacial shear strength leading to a safer and more economical 

design of reinforced concrete members. However, there are still some unconservative 

predictions, particularly for specimens with high-strength concrete and high-strength steel. 
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Therefore, future studies should aim to further reduce the extent of overestimation to address the 

needs of a conservative design paradigm. 

 

 
Figure 3.8 Prediction accuracy of the AASHTO LFRD design equations and the proposed 
LID scheme in terms of coefficient of determination (R2), mean absolute error (MAE), and 
root mean squared error (RMSE). The MAE and RMSE values are plotted in the units of 

MPa (6.89 MPa = 1 ksi). 
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(a) AASHTO LRFD (b) Proposed LID scheme 
Figure 3.9 Comparison of the prediction accuracy of the AASHTO LFRD design provisions 

(with design limits) and the proposed LID scheme (no limits). NSC, NSS, HSC, and HSS 
represent normal strength concrete, normal strength steel, high-strength concrete, and high-
strength steel, respectively. Concrete having compressive strength greater than 60 MPa (9 

ksi) is designated herein as HSC. Steel reinforcement having yield strength greater than 420 
MPa (60 ksi) is identified herein as HSS. 
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Chapter 4 Summary and Conclusions 

This study identified the inaccuracy of the existing design provisions vis-à-vis the 

prediction of shear strength at the normal-weight concrete-to-concrete interface. Two deep 

learning models based on MLP and 1D CNN were explored for a more accurate prediction of the 

interfacial shear strength. The proposed MLP, which is more robust than the 1D CNN, was 

observed to considerably outperform both the AASHTO LRFD and ACI 318 design provisions. 

This is attributable to a neural network’s superior ability to learn nonlinear functions. 

Subsequently, a neural additive model was leveraged to develop a novel LID scheme based on a 

reduced parameter space. The proposed LID scheme outperformed the existing design equations 

by considerable margins. The effectiveness of any learning-based method relies on the quality of 

data used to train the model. In this study, to ensure reliable predictions, ten-fold cross-validation 

was conducted by splitting the data into different train-test sets. The model's ability to perform 

well on both the training and test sets indicates that it can generalize well to novel, unseen data 

without being overly influenced by potentially noisy training data. Overall, it is believed that this 

study will motivate the design community to consider such tools to help update the existing 

design provisions to benefit from some of the clear advantages the latest deep learning 

techniques can offer. 

This study did not account for the interplay between different design parameters, which is 

a scope for future work. Future studies should also look into a more granular gradation of the 

interface, taking into account the amplitude of roughness, aggregate properties, presence of a 

pre-existing crack along the shear plane, and the time gap between the casting of the adjacent 

surfaces. Moreover, quantifying the uncertainty and reliability of the predicted shear strength 

values is another important research area that merits attention. 
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